I’m trying to study for my Mathematics course and I need some help to understand this question.

1. Employees at a large computer company earn sick leave in one-minute increments depending on how many hours per month they work. They can then use the sick leave time any time throughout the year. Any unused time goes into a sick bank account that they or other employees can use in the case of emergencies. The human resources department has determined that the amount of unused sick time for individual employees is uniformly distributed between 0 and 480 minutes. Based on this information, what is the probability that an employee will have less than 20 minutes of unused sick time?

2. Employees at a large computer company earn sick leave in one-minute increments depending on how many hours per month they work. They can then use the sick leave time any time throughout the year. Any unused time goes into a sick bank account that they or other employees can use in the case of emergencies. The human resources department has determined that the amount of unused sick time for individual employees is uniformly distributed between 0 and 480 minutes. Based on this information, what is the probability that three randomly chosen employees have over 400 unused sick minutes at the end of the year?

3. Employees at a large computer company earn sick leave in one-minute increments depending on how many hours per month they work. They can then use the sick leave time any time throughout the year. Any unused time goes into a sick bank account that they or other employees can use in the case of emergencies. The human resources department has determined that the amount of unused sick time for individual employees is uniformly distributed between 0 and 480 minutes. The company has decided to give a cash payment to any employee that returns over 400 minutes of sick leave at the end of the year. What percentage of employees could expect a cash payment?

4. Employees at a large computer company earn sick leave in one-minute increments depending on how many hours per month they work. They can then use the sick leave time any time throughout the year. Any unused time goes into a sick bank account that they or other employees can use in the case of emergencies. The human resources department has determined that the amount of unused sick time for individual employees is uniformly distributed between 0 and 480 minutes. The company has decided to give a cash payment to any employee that returns over a specified amount of sick leave minutes. Assuming that the company wishes no more than 5 percent of all employees to get a cash payment, what should the required number of minutes be?

5. Suppose the time it takes for a customer to be served at a fast-food chain business is thought to be uniformly distributed between 3 and 8 minutes, then the probability that a customer is served in less than 3 minutes is 0.

6. If the time it takes for a customer to be served at a fast-food chain business is thought to be uniformly distributed between 3 and 8 minutes, then the probability that the time it takes for a randomly selected customer to be served will be less than 5 minutes is 0.40.

7. If a uniform distribution and normal distribution both have the same mean and the same range, the normal distribution will have a larger standard deviation than the uniform distribution

8. It has been determined the weight of bricks made by the Dillenger Stone Company is uniformly distributed between 1 and 1.5 pounds. Based on this information, the probability that two randomly selected bricks will each weigh more than 1.3 pounds is 0.16.

9. The amount of drying time for the paint applied to a plastic component part is thought to be uniformly distributed between 30 and 60 minutes. Currently, the automated process selects the part from the drying bin after the part has been there for 50 minutes. Based on this, the probability that a part selected will not be dry is approximately 0.33.

10. The amount of drying time for the paint applied to a plastic component part is thought to be uniformly distributed between 30 and 60 minutes. Currently, the automated process selects the part from the drying bin after the part has been there for 50 minutes. The probability that none of three parts picked are still wet when they are selected is approximately 0.04.